If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45r^2=5r
We move all terms to the left:
45r^2-(5r)=0
a = 45; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·45·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*45}=\frac{0}{90} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*45}=\frac{10}{90} =1/9 $
| 4x+4x=x-8x | | 2y-4=3(6y+7) | | 2y-4=6(6y+10) | | 6(7x-2)=2(7x+106) | | 4x+10+5x-1=9 | | 2y-4=6(6y+4) | | 7(n-3)-(2-4n)=10n | | 2y-8=6(6y+14) | | 3x+25=9x+22 | | 15x+12–8x=-3+7x-7 | | -6=(3/4)n | | 6(y-100)=-42 | | 2(m-1)+3m-4+m=18 | | 2y-8=6(2y+4) | | 7(h-92)=42 | | 2y-8=6(6y+3) | | 9x-146+2x=35+2x+8 | | t/3+-9=-13 | | 26/(10x-24)=0 | | 2y-8=6(6y+4) | | (z+62+77+94)/4=80 | | h+57/6=-3 | | 6(y-96)=-6 | | 4x+5=5-+2 | | 180-x=3(90+x) | | -65=5h | | -5+-2u=-1 | | -28x-146+2x=35+2x+8 | | 70=7h | | x/3=9.5 | | 148+2p=193-1p | | 10=g/4+14 |